

A Fluorescent Approach to Understanding Nutrient and Dye Translocation in Crops

Veronica Portillo, Rose Elbert, Audrey Empkey, Xuan Xu, Gaurav Jha, and Amie Norton

Background

Tracking

- Understanding molecule movement in plants is key for improving plant physiology and agriculture.
- > Traditional transport tracking uses radioisotopes or destructive sampling, limiting spatial and temporal resolution.

Knowledge gap in detection

- ➤ Current methods for tracking transport processes—like radiolabeling, dye infiltration, or destructive sampling—are limited by resolution, invasiveness, and scalability.
- > These limits hinder real-time visualization and quantification of translocation pathways.

Non-destructive solution

- ➤ This study presents luminescent seeds as a new way to study dye movement in germinating plants.
- ➤ We added fluorescent and luminescent dyes during seed soaking, creating plants that allow continuous, noninvasive imaging of molecular transport.
- Early results show dyes move from seeds to roots, shoots, and cotyledons in patterns matching xylem and phloem transport.

Impact and Application

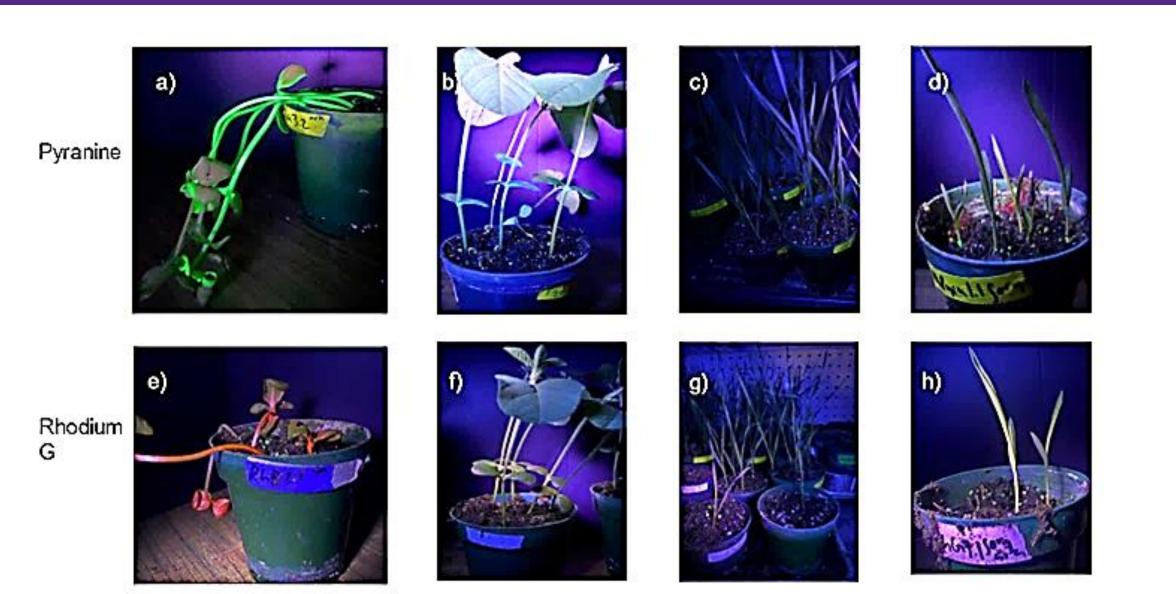
- Luminescent seeds enable dynamic, high-resolution tracking of transport without destructive sampling, overcoming key limitations of current methods.
- ➤ This approach bridges a methodological gap in plant physiology, opening new ways to study nutrient allocation, stress responses, and agrochemical movement.
- Presenting luminescent seeds as a versatile tool, this work encourages new imaging strategies to reveal hidden plant transport pathways, with implications for research and sustainable agriculture.

Translocating Luminescent Dyes As Trackers of Nanomaterials in Plants Results Types of Dyes and **Plants Tested** Synthetic dyes Pyranine and a UV-Rhodium G visible showed the most light revealed uptake Dicots showed of the more uptake of dyes dyes than Monocots

Treatment of Plants

Dry Treatment	Wet Treatment
For each trial, 10 seeds of each	For each trial, 10 seeds of each
plant were coated and tumbled	plant were soaked for 12 hours
for 12 hours in approximately 1	in solutions of 200 milliliters of
gram of each respective dye.	water mixed with approximately
This was repeated 5 times.	1 gram of each dye. This was
	repeated 5 times.

Dyes and Plant Types



Dicots: Soybean, Sunflower

T.S. of Dicot Stem

Photos of Luminescence

Pyranine

Crops with seed treatments of either Rhodamine G and Pyranine photographed of under a UV-visible light a) & e) sunflowers b) & f) soybeans c) & g) wheat d) & h) sorghum

Germination

	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
Dye	Wheat	Wheat	Soybeans	Soybeans	Sorghum	Sorghum	Sunflowers	Sunflowers
Rhodamine G	0.5 ± 0.3	4.2 ± 1.9	2.6 ± 0.7	7.2 ± 2.3	2.0 ± 0.9	3.0 ± 2.0	2.8 ± 1.5	5.8 ± 2.0
Rhodamine B	5.0 ± 1.9	4.5 ± 1.7	6.8 ± 1.2	4.4 ± 1.6	6.2 ± 1.4	4.6 ± 1.6	7.4 ± 1.2	7.2 ± 0.8
Pyranine	7.8 ± 1.5	7.6 ± 1.2	5.2 ± 2.0	5.0 ± 1.4	6.4 ± 1.6	6.6 ± 1.2	6.4 ± 1.8	8.4 ± 0.8
J · · · · · · · · · · · · · · · · · · ·								
Red Cabbage	8.4 ± 0.9	7.6 ± 1.1	9.0 ± 0.3	8.2 ± 0.5	4.6 ± 1.7	6.6 ± 1.2	8.8 ± 0.7	8.4 ± 1.1
Butterfly Pea	10 ± 0.0	8.6 ± 0.9	2.6 ± 0.7	7.4 ± 1.1	2.0 ± 0.9	6.6 ± 1.2	2.8 ± 1.5	5.8 ± 1.1

Average Germination from 5 reps, of 10 plants for each treatment of dye and plant type

UV-visible Data of Dyed Seeds

	λ_{max}									
	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry		
Dye	Wheat	Wheat	Soybeans	Soybeans	Sorghum	Sorghum	Sunflowers	Sunflowers		
Rhodamine G	540	540	525	525	531	528	526	530		
Rhodamine B	560	555	540	540	555	545	549	555		
Pyranine	430	420	420	425	405	404	419	406		
Red Cabbage	260	300	240	250	258	257	255	262		
Butterfly Pea	275	260	240	240	253	286	239	256		

Dye was extracted from the seeds by removing the seeds from the solutions and drying them on a dry surface for 24 hours. The seeds were then added to 100 mL of water. The seeds were allowed to soak in the water for 48 hours; during this time, the dye on the outside of the seed was absorbed into the water. The change in the water's color highlighted this. The UV-visible spectrum of the solution was recorded. Taking the UV-visible spectrum allowed us to quantify the amount of dye absorbed by the seed in each treatment.

Conclusions

- > The seeds absorbed the 5 dyes as shown by the UV-visible
- ➤ The plants were able to translocate Rhodamine G and Pyranine from the seeds
- ➤ Other dyes were visible on the leaves of the plants through a spraying application, but seed treatments did not result in translocation of the dyes.

Acknowledgement

Kansas Water Institution BioRender